Geometric Ideas for Cryptographic Equation Solving in Even Characteristic

نویسندگان

  • Sean Murphy
  • Maura B. Paterson
چکیده

The GeometricXL algorithm is a geometrically invariant version of the XL algorithm that uses polynomials of a much smaller degree than either a standard Groebner basis algorithm or an XL algorithm for certain multivariate equation systems. However, the GeometricXL algorithm as originally described is not well-suited to fields of even characteristic. This paper discusses adaptations of the GeometricXL algorithm to even characteristic, in which the solution to a multivariate system is found by finding a matrix of low rank in the linear span of a collection of matrices. These adaptations of the GeometricXL algorithm, termed the EGHAM process, also use polynomials of a much smaller degree than a Groebner basis or an XL algorithm for certain equation systems. Furthermore, the paper gives a criterion which generally makes a Groebner basis or standard XL algorithm more efficient in many cryptographic situations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of cybernetic metamodel of cryptographic algorithms and ranking of its supporting components using ELECTRE III method

Nowadays, achieving desirable and stable security in networks with national and organizational scope and even in sensitive information systems, should be based on a systematic and comprehensive method and should be done step by step. Cryptography is the most important mechanism for securing information. a cryptographic system consists of three main components: cryptographic algorithms, cryptogr...

متن کامل

Polyhedral Omega: A New Algorithm for Solving Linear Diophantine Systems

Polyhedral Omega is a new algorithm for solving linear Diophantine systems (LDS), i.e., for computing a multivariate rational function representation of the set of all non-negative integer solutions to a system of linear equations and inequalities. Polyhedral Omega combines methods from partition analysis with methods from polyhedral geometry. In particular, we combine MacMahon’s iterative appr...

متن کامل

AN ALGORITHM FOR FINDING THE EIGENPAIRS OF A SYMMETRIC MATRIX

The purpose of this paper is to show that ideas and techniques of the homotopy continuation method can be used to find the complete set of eigenpairs of a symmetric matrix. The homotopy defined by Chow, Mallet- Paret and York [I] may be used to solve this problem with 2""-n curves diverging to infinity which for large n causes a great inefficiency. M. Chu 121 introduced a homotopy equation...

متن کامل

Comparative study on solving fractional differential equations via shifted Jacobi collocation method

In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...

متن کامل

AN ALGORITHM FOR FINDING THE STABILITY OF LINEAR TIME-INVARIANT SYSTEMS

The purpose of this paper is to show that the ideas and techniques of the classical methods of finding stability, such as the criteria of Leonhard and Nyquist, can be used to derive simple algorithm to verify stability. This is enhanced by evaluating the argument of the characteristic equation of a linear system in the neighbourhood of the origin of the complex plane along the imaginary axis

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009